iCPS – Ingersoll Composite Programming System The Integrated Suite for Composite Manufacturing

INGERSOLL COMPOSITE PROGRAMMING SYSTEM

iCPS (Ingersoll Composite Programming System), is a complete solution for the design, manufacturing and analysis of a composite part

iCPS/Designer

Helps engineers optimize the layup of composite parts

- Layup method strategy definition
- Continuous surface definition
- Surface updating

iCPS/NC Programmer and Analysis

Automates the manufacturing process of composite parts

- Analysis of the manufacturability of a part
- Ply generation
- Fiber paths deviation and curvature analysis
- Link with analysis to automate the update of the FEA model
- Definition of automated fiber placement operation
- NC data generation

iCPS Advantages:

- One native Catia V5 platform to design, manufacture and analyze a composite part.
- No interface needed.
- Optimum Fiber path design through the use of native continuous CAD geometry.
- No Lay-up discontinuity due to the possibility to incorporate Surface Topology and Manufacturing constraints during the design of the Laying Surface support to guarantee a free JERK machine motion.
- Generate intermediate Surfaces to ensure smooth machine transitions across varying ply thickness distributions.

iCPS - CAAV5 Software Partner

REFERENCES: 5–10 CUSTOMERS

- iCPS/Designer and iCPS/NC
 - Airbus
 - Lockheed
 - Boeing
- Target Markets:
- Aerospace, Defense and Automotive
- Design and Manufacturing Depts.
- Proven Customer Benefits:
- One platform to design, manufacture and analyze a composite part
- Optimum fiber path design through the use of continuous geometry description
- Allows the NC Programmer to locally control Process parameters.
- Take advantage of the possibility to customize machine off-part motions in order to minimize parasite time
- Preview Head Motion to avoid collisions
- Model Roller deformation and feasibility for any Surface curvature distribution.
- Direct Link with FEA solver such as Nastran and Abaqus to automatically update bulk data file to reflect what will be the manufactured part.

iCPS – Ingersoll Composite Programming System

- Fiber Placement Strategy - Fiber Placement Strategy - Point St	
VOUR FIRER PLACEMENT STRATEGY	Fiber Placement Strategy ? Layup Method: Constant Angle Parameters
 Allows the designer to specify the fiber placement layup strategy Different layup strategies gygilable 	Start Point: SP 5.7 Boundary Lap/Gap: 0.5 Stagger Shift: 0 mm
 Different layup strategies available – Constant Angle – Angle Offset – Guide Offset 	Interband Offset: 0 mm Interband Gap Limit: 0.5 Interband Lap Limit: 0.5
– Tailor Fiber Path – Manual	OK Scancel

SURFACE OFFSET:

Generate intermediate Surfaces to ensure smooth machine transitions across varying ply thickness distributions.

Dage Dallace				
Use the ply group's	defined surface	(All plies must be th	e same)	
O Selected				
Simplified Surface no	selection		_	
Sequence	Ply	Thickness	Update	^
Const Ang - Odeg	Ply.1	0.1	No	
Const Ang - 45deg	Ply.2	0.1	No	
Const Ang45deg	Ply.3	0.1	No	
Const Ang - 90deg	Ply.4	0.1	No	=
Ang Offset - Odeg	Ply.5	0.1	Yes	
Ang Offset - 45deg	Ply.6	0.1	No	
Ang Offset45deg	Ply.7	0.1	No	-
Ang Offset - 90deg	Ply.8	0.1	No	
Guide Offset 1	Ply.9	0.1	No	~
Quida Officat 2	Dk. 10	0.1	Mar	-
N.				
Select All Deselect	All Invert Sele	ction		
Ply Thickness				
Edit Thickness Rev	ert To Default			
Lindaka Mathad	ore to berduic			
opuace mechou				
O Manual				
Set update	est Undete			
 Auto 				
Update every 5	Sec.	uences		
Advanced				
Draning Direction				
braping birection	Reverse Direc	tion		
Enhanced Update				
Comparation miller				
		A	1	- 1

Tool Path Review

- Preview Head Motion
- Collision Avoidance

PLY OPERATION DEFINITION

- Define the manufacturing operations
- Define global process parameters (Compaction heater, tension, etc.

Composite Part Operation.1 Manufacturing Program.2 Tool Change.1 Roller.1 MPly Operation.1

TOOL PATH ANALYSIS

Allows the NC Programmer to analyze:

- Off Part Motion
- Laying Motion
- Fiber Path Discontinuity
- Trimming

– Ply Comparison

- Angle Deviation
- In plane Curvature (Steering)

SURFACE SIMPLIFICATION

- Creates a continuous parametric surface definition
- Possibility to incorporate topology and manufacturing constraints

Tool Path Customization

Allows the NC Programmer to customize:

- Vectors Orientation
- Course Customization
 - Laying Order
 - Remove
 - Reverse
 - Break
- Adjust ply process information

- Allows the NC Programmer to locally control process parameters such as:
 - Compaction Force
 - Compaction Temperature
 - Tow Tension
 - Feedrate
 - Dynamic Pinch Control
- Better Layup quality on honeycomb, foam, fiber glass and otherwise difficult surface contouring.

Advanced Off Part Motion

- Allows the NC Programmer to optimize the machine motion between courses
- Improve cycle time

FEA Link

Compare theoretical and manufactured fiber angles

Ply: 1
Real: -0.611065 Ply: 1
the second s
4 Theoretical: 9 Real: -0.000242326 Ply: 1
20200 U.D
ElemId: 436 Theoretical: 0 Real: 1.06874 Ply: 1
and the second
retical: 0 Real: 4.00726 Ply: 1
ElemId: 418 Theoretical: 6. Real: 2.03263 Ply: 1
ented 435 II Theoretical: 0 II Real: 5 59015 II Ply: 1
ElemId: 400 Theoretical: 0 Real: 2.6332 Ply: 1
Real: 0.0302429 [] Ply: 1
ElemId: 417 Theoretical: 0 Real: 1.22259 Ply: 1
Theoretical: 91 Real: 6.07383e-006 Ply: 1 ElemId: 382 Theoretical: 0 Real: 5.75308 Ply: 1
Elemid: 399 Theoretice: 0 Real: 1.20532 Ply: 1 Elemid: 17
27597 Ply: 1 Theoretica: U Keal: -0.122222 Ply: 1
Elemid: 361 Theoretical: 0 Real: -1.622

COMPLETE PROCESS SIMULATION

iCPS PROGRAMMING

- Composite part definition
- Ply operation definition
- Compaction modeling
- Ply computation
- Tool path analysis
- Tool path customization
- Off part motion customization
- FEA link

Ingersoll Machine Tools, Inc. is a global leader in the development of advanced machine tools for the world's aerospace, transportation, energy and other heavy industries. Products range from general purpose machines that bring greater flexibility and productivity to a wide variety of parts, to special purpose, one-of-a-kind machines delivering unique solutions. For the aerospace industry, Ingersoll excels in building machines to produce component parts and large structures made of aluminum, hard metals and composite materials.

In addition, Ingersoll provides a unique contract manufacturing resource for prototype machining and production runs, from small engine parts to locomotive diesel blocks. For more than a century, Ingersoll has led in the continuous improvement of machines and processes that enable customers around the world meet the challenge for more efficient production, higher quality and, ultimately, greater competitiveness.

Together with our parent company, The Camozzi Group, we've established a global synergy to serve all the needs of our customers.

Ingersoll Machine Tools, Inc.

707 Fulton Ave. • Rockford, IL 61103 USA • Tel 815-987-6000 • Fax 815-987-6725 info@ingersoll.com • www.ingersoll.com

European Headquarters and Service

Via Attilio Franchi, 20 • 25127 Brescia, Italy • Tel +39 030 3706268 • Fax +39 030 3706302

Building our Future...together!

